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The influence of the tail features of the local magnetic field probability density function �PDF� on the
ferromagnetic Ising model is studied in the limit of infinite range interactions. Specifically, we assign a
quenched random field whose value is in accordance with a generic distribution that bears platykurtic and
leptokurtic distributions depending on a single parameter ��3 to each site. For ��5 /3, such distributions,
which are basically Student-t and r distribution extended for all plausible real degrees of freedom, present a
finite standard deviation, if not the distribution has got the same asymptotic power-law behavior as a �-stable
Lévy distribution with �= �3−�� / ��−1�. For every value of �, at specific temperature and width of the distri-
bution, the system undergoes a continuous phase transition. Strikingly, we impart the emergence of an inflexion
point in the temperature-PDF width phase diagrams for distributions broader than the Cauchy-Lorentz ��=2�
which is accompanied with a divergent free energy per spin �at zero temperature�.
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I. INTRODUCTION

Disorder is ubiquitous in Nature. Regarding materials and
their statistical properties, disordered magnetic systems have
been systematically studied in condensed matter and statisti-
cal physics. From a theoretical point of view, the most stud-
ied case has certainly been the random-field Ising model
�RFIM� �1,2� because of its simplicity as a frustrated system
and relevancy to experiments �3,4� which has been quite
boosted after the identification of the RFIM with diluted an-
tiferromagnets in the presence of a uniform magnetic field
�3,5–7� and several ferromagnetic compounds as well
�3,4,8�.

In order to generate the local random field, both the
Gaussian and the bimodal probability density function �PDF�
have intensively been used �9–11�. Nevertheless, controversy
over the order of the low-temperature phase transition has
still been at the helm of several discussions. On the one
hand, a high-temperature series expansion up to 15th order
showed a continuous phase transition for both the Gaussian
and the bimodal PDF �12�. On the other hand, from an exact
determination of the ground states in higher dimensions �d
=4�, Swift et al. �13� found a discontinuous phase transition
for the bimodal random field, whereas for d=3 dimensions
and the Gaussian distribution the transition is continuous. By
applying the Wang-Landau algorithm �14�, recent simula-
tions on three-dimensional lattices claimed the discovery of
first-order-like features in the strongly disordered regime for
both those PDFs �15,16�.

As an alternative to the above-mentioned approaches,
there is the mean-field theory which can present a good

qualitative agreement with some short-range interaction
models and experiments. Once more, the Gaussian and the
bimodal PDF have been widely investigated �17,18� as well
as related distributions such as the trimodal �19,20� and the
double Gaussian �21� or the treble Gaussian �22�. In the
Gaussian RFIM case, the phase diagram only presents con-
tinuous phase transitions �17�, whereas in the bimodal case
the phase diagram presents a continuous phase transition for
high temperatures and low random-field intensities and for
low temperatures and high random-field intensities a first-
order transition arises therefrom �18�. In other more elabo-
rated cases a rich critical behavior can be found for finite
temperatures as it has been recently conveyed in �21,22�.
Accordingly, we can understand that the choice of the local
random-field PDF is of crucial importance for a good theo-
retical description of real systems. In this particular context
and based on the identification of the RFIM with diluted
antiferromagnets in a uniform field, for which the local ran-
dom fields are expressed in terms of quantities that vary in
both signal and magnitude �5,7�, the use of continuous PDFs
has demonstrated to be a very promising approach �21,22�.

The utilization of Dirac delta and Gaussian related distri-
butions is much supported on the easiness of the analytical
treatment of the subsequent equations as well as the perva-
siveness of the Gaussian distribution. Although the Gaussian
was assumed for many generations as the “natural distribu-
tion,” in the last decades the concept of �asymptotic� scale
invariance of probability density functions has abundantly
emerged �23�. In the realm of disordered systems, PDFs
different to the n-Gaussian or the n-Dirac delta were used
to explain the critical behavior of several compounds. For
instance, PDFs with very fat tails were introduced to ana-
lyze organic charge-transfer compounds such as N-methyl-
phenazium tetra-cyanoquinodimethanide �NMP-TCNQ�,
quinolinium-�TCNQ�2, acridinium-�TCNQ�2, and phenazine-
TCNQ, as first reported in Ref. �24�. Conversely, a sub-
Gaussian distribution was used to account for the magnetic
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properties and the critical behavior of poly�metal phosphi-
nates� �25�. Last but not least, as was proven by Gosset �26�,
asymptotic scale invariant distributions can be derived from
the Gaussian distribution when finite elements are taken into
account so that finite and scale-dependent systems can be
treated as infinite and �asymptotically� scale independent.
Therefore, the study of more general continuous PDFs turns
up very interesting as it furnishes a more widespread picture
of disordered magnetic systems than the distributions used
up to now. With such a goal in mind, we study herein the
effects of applying a more general family of continuous
PDFs in the mean-field RFIM. Explicitly, our PDF repro-
duces the r and t distributions for real degrees of freedom.
For specific values of the triplet composed of the degree of
freedom, the temperature, and the PDF width, our results
show that the system experiences a continuous phase transi-
tion that is not dependent on the finiteness of the standard
deviation and the scale behavior �dependence or indepen-
dence� of the random field. Moreover, for PDFs fatter than
the Cauchy-Lorentz, we determine the emergence of an in-
flexion point in the temperature versus PDF width phase dia-
grams that coexists with a divergence at zero temperature of
the free energy per spin.

II. MODEL

The infinite-range-interaction Ising model in the presence
of an external random magnetic field is defined in terms of
the Hamiltonian

H = −
J

N
�
�i,j�

SiSj − �
i

HiSi, �2.1�

where the sum ��i,j� runs over all distinct pairs of spins Si
= �1 �i=1,2 , . . . ,N�. The random fields �Hi� are quenched
variables and ruled by a PDF that is defined by a parameter �
�generic degree of freedom�. For ��1,

Pi�Hi� =�1 − �

�
B�

�	 5 − 3�

2�1 − ��



�	2 − �

1 − �

 �1 − B��1 − ��Hi

2�1/1−�,

�2.2�

�with �H�	 �B��1−���−1/2� which is the generalized r distri-
bution, and for �
1, we have

Ps�Hi� =�� − 1

�
B�

�	 1

� − 1



�	 3 − �

2�� − 1�

 �1 − B��1 − ��Hi

2�1/1−�,

�2.3�

which is the generalized Student-t distribution. By general-
ized we mean that the degrees of freedom, m and n, of t and
r distributions are extended to the entire domain of feasible
real values according to the relations �= �m+3� / �m+1�

�m�0� and �= �n−4� / �n−2� �n�2�, respectively. In Eqs.
�2.2� and �2.3�, �� . � is the gamma function and B� is given
by

B� =
1

�3 − ���2 , �2.4�

where � is the width of the PDF. For ��5 /3 the width and
the standard deviation, 
, are related by

�5 − 3��
2 = �3 − ���2. �2.5�

Alternatively, the functional form of Eqs. �2.2� and �2.3� can
be obtained by optimizing the entropic form presented in
�27� by applying the concept of escort distribution, p�H�
� P��H� /
P��H�dH �28,29�, and for that is many times
called q -Gaussian. In this case, �2 plays the role of the
constraint, 
H2p�H�dH=�2, which is always finite for ��3
with the corresponding Lagrange multiplier given by Eq.
�2.4�. Expressly, �2 represents the standard deviation of the
escort distribution and it is finite even when the distribution
per se has got a divergent standard deviation, 
H2P�H�dH
=
2. Therefore, it represents a way of appraising the broad-
ness of the distribution and this is the reason why we named
� width. Recently, Pi�s��H� has also been coined generalized
Lorentzian �30�. Although we acknowledge both nomencla-
tures we use the traditional terminology of r and t distribu-
tions that is quite well established in the statistics community
for a long time. The PDF defined in Eqs. �2.2� and �2.3� is
symmetrical around H=0 and represents a family of continu-
ous distributions that recovers some well-known distribu-
tions using appropriate limits, namely: �i� the uniform distri-
bution, for �→−�; �ii� compact support distributions
�limited�, for ��1; �iii� the Gaussian distribution, for �→1;
�iv� the Cauchy-Lorentz distribution, for �=2; �v� Dirac
delta, for every ��3 and �→0.

To boot, the functional form �2.3� is an asymptotic power-
law decaying PDF with finite standard deviation for 1��
�5 /3 and an asymptotic power-law decaying PDF, but with
infinite standard deviation instead. In both cases the decay
exponent is equal to 2 / ��−1�. The latter case is also capable
of reproducing the tail behavior of �-stable Lévy distribu-
tions

L��H� = �
−�

�

exp�− a�k�� + ikH�dk ,

with �= �3−�� / ��−1� and broadness a, whose escort distri-
bution has got a finite width as well. For the case of the
Cauchy-Lorentz, �=1 ��=2� �the only case for which Lévy
distributions are explicitly defined in real space�, the param-
eter a is equal to width �. Accordingly, if we bear in mind
the previous work by Aharony �18�, we can hold that our
enquiry also sheds light on the low-temperature behavior of
the random-field Ising model with the local magnetic field
associated with a �-stable Lévy distribution. In Fig. 1, we
depict PDFs �2.2� and �2.3� for some values of �. Regarding
the kurtosis,

� �
�H4�
�H2�2 , �2.6�
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the distribution is platykurtic, ��3, for ��1 or leptokurtic,
�
3, for �
1. At this point it is important to stress that, as
it has been made until now, in spite of being able to present
nonmesokurtic distributions the combination of Gaussians
results in asymptotic scale-dependent distributions.

From the free energy, F��Hi��, associated with a given
realization of site fields, �Hi�, we calculate the quenched av-
erage, �F��Hi���H,

�F��Hi���H =� �
i

�dHiP�Hi��F��Hi�� . �2.7�

The general mean-field result of the free energy per spin, in
terms of any PDF of the random fields, is well known
�17,18� and is given by

f =
J2

2
m2 −

1

�
�log�2 cosh ��Jm + H���H �2.8�

and the magnetization is given by

m = �tanh���Jm + H���H, �2.9�

where �¯ �H stands for averages over realizations of the dis-
order, i.e.,

� ¯ �H = �
−�

+�

dHP�H�� ¯ � .

Close to a continuous transition between ordered and dis-
ordered phases, the magnetization m is small. So, we can
expand Eq. �2.9� in powers of m,

m = Am + Bm3 + Cm5 + O�m7� , �2.10�

where the coefficients are given by

A = �J�1 − �1� , �2.11�

B = −
��J�3

3
�1 − 4�1 + 3�2� , �2.12�

C =
��J�5

15
�2 − 17�1 + 30�2 − 15�3� , �2.13�

with

�k = �tanh2k��H��H.

With the aim of finding the continuous critical frontier we set
A=1 provided that B�0. If a first-order critical frontier also
occurs, the continuous line must end when B=0; in such

cases, the continuous and the first-order critical frontiers con-
verge at a tricritical point, whose coordinates are obtained by
solving the equations A=1 and B=0, on the condition that
C�0. Thus, for A=1, we obtain

kT

J
= 1 − �tanh2��H��H. �2.14�

In the following section, we discuss the role of PDFs �2.2�
and �2.3� when they are considered in the formulas presented
in this section. Our survey includes the analysis of the phase
diagrams for the whole domain of �.

III. FINITE-TEMPERATURE ANALYSIS

Following the above presented results, we proceed by cal-
culating the critical frontiers of the model when the tempera-
ture is different from zero. In the RFIM, we have a single
transition between the two possible phases of the magnetiza-
tion: the ferromagnetic phase �m�0� and the paramagnetic
phase �m=0�. The critical frontier separating these two
phases is found by solving Eq. �2.14�. On account of the fact
that Eq. �2.14� is analytically unsolvable, we have been com-
pelled to solve it by numerical means using the global ad-
aptative strategy algorithm �31� that has been proven as the
best �i.e., fast and accurate� numerical integration procedure
for smooth integrands �32�.

A. Platykurtic case: ��1

Let us denote f i and mi as the free energy and the mag-
netization for this regime of �, respectively. Thus, Eqs. �2.8�
and �2.9� become

f i =
J2

2
mi

2 −
1

�
�

−1/�B��1−��

1/�B��1−��
dHPi�H�log�2 cosh ��Jmi + H��

�3.1�

and

mi = �
−1/�B��1−��

1/�B��1−��
Pi�H�tanh ��Jmi + H� , �3.2�

where Pi�H� is given by the PDF in Eq. �2.2�. The continu-
ous critical frontier has been found when we have solved Eq.
�2.14�. For all solutions obtained, we have calculated a nega-
tive value of B, Eq. �2.12�, which has confirmed the continu-
ous character of the phase transition.
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FIG. 1. �Color online�
Random-field probability distribu-
tions for some values of the pa-
rameter � �from bottom to top: �
=5 /2, 3/2, 1, 1/2, and −20�, in the
normal �left panel� and log-log
scale �right panel�. We have used
�=1 in all cases.
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If a first-order transition existed as well, the critical fron-
tier would be found by equalizing the free energy at each
side of this line, i.e., f�m=0�= f�m�0�. Using this proce-
dure, we have numerically determined the critical frontiers
separating the paramagnetic and ferromagnetic phases, for
typical values of ��1. We have confirmed that the above
coefficient B, Eq. �2.12�, is always negative. The phase dia-
gram is shown in Fig. 2, on the plane defined by the tem-
perature, T, and the PDF width, � �both in units of J�, for
some typical values of ��1. In that figure, the lines repre-
sent the numerical solution of Eq. �2.14�, whereas the points
were analytically obtained through a zero-temperature analy-
sis, which is going to be discussed in the next section. Notice
that the ferromagnetic phase is reduced by increasing the
parameter � from �=−� to �=1 as shown in Fig. 2, and for
the maximum value for r distributions, �=1, we recover the
simple phase diagram of the Gaussian distribution �17�.

B. Leptokurtic case: �
1

Analogously to the platykurtic case, we denote fs and ms
as the free energy and the magnetization per spin for this
regime of �. The expansion of the magnetization Eq. �2.10� is
valid for this case as well, but the averages over the disorder
�¯ �H must be made according to PDF �2.3�,

fs =
J2

2
ms

2 −
1

�
�

−�

+�

dHPs�H�log�2 cosh ��Jms + H�� ,

�3.3�

ms = �
−�

+�

Ps�H�tanh ��Jms + H� , �3.4�

where in this case the integration limits are taken in the range
�−� ,+��.

By considering PDF �2.3�, the above presented procedure
for the determination of the critical frontiers can be em-
ployed once more. In other words, Eq. �2.14� provides the
continuous critical line of the phase diagram. Using this pro-
cedure, we have numerically evaluated the critical frontiers
separating the paramagnetic and ferromagnetic phases for
typical values of �
1. Like the platykurtic case, the lep-
tokurtic case has only given negative values of B, i.e., no
other than continuous phase transition occurs. The phase dia-
gram is shown in Fig. 3, on the plane formed by the tem-
perature and the PDF width � �in units of J�, for some spe-
cific values of �
1. Still, the lines represent numerical
solutions of Eq. �2.14�, while at the same time the points
were analytically obtained through a zero-temperature analy-
sis, which is going to be discussed shortly. As we have per-
ceived in the platykurtic case, the ferromagnetic phase is
reduced by augmenting �. Similar behavior was found in the
Gaussian �17� and the double-Gaussian RFIM �21� by in-
creasing the standard deviation of such PDFs. However, a
chief difference emerges. For distributions with fatter tails
than the Cauchy-Lorentz PDF, the concavity of the critical
frontier changes in the high-temperature region as we depict
in the phase diagram presented in Fig. 3.

IV. ZERO-TEMPERATURE ANALYSIS

Moving forward, we now consider the phase diagram of
the model at zero temperature. As in the finite-temperature
case, we evolve twofold: the platykurtic case and the lep-
tokurtic case, ��1 and �
1, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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T
�

J
P

F

FIG. 2. �Color online� Phase diagram of the model, in the plane
temperature vs � �in units of J�, for some values of the parameter
��1. The gray dotted line is for �=−� and ��T=0�=J; the brown
dashed line is for �=−20 and ��T=0�=0.9831. . .J; the dot-dashed
orange line is for �=0 and ��T=0�=0.8660. . .J; the dotted green
line is for �=1 /2 and ��T=0�=3�5 /64J; the black full line is the

Gaussian case with ��T=0�=�2 /�J. We can observe continuous
phase transitions between the ferromagnetic �F� and the paramag-
netic �P� phases for all values of �. The points on the � /J axis were
exactly calculated through a zero-temperature analysis �Sec. IV A�
where from we can see a good agreement between the analytical
and numerical results which by interpolation indicates discrepancies
never greater than 1%.
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FIG. 3. �Color online� Phase diagram of the model, in the plane
temperature versus � �in units of J�, for some values of the param-
eter �
1. The black full line is the Gaussian case with ��T=0�
=� 2

�J; red dashed line is for �=3 /2 and ��T=0�= 4
�3�

J; the purple
dotted line is for �=2 and ��T=0�= 2

�J; the dot-dashed blue line is
for �=5 /2 with ��T=0�=0.4754. . .J. We can observe continuous
phase transitions between the ferromagnetic �F� and the paramag-
netic �P� phases for all values of �. The points represent the results
obtained by the zero-temperature analysis. Notice the change in the
concavity of the critical frontier for large values of � �
2.0�. The
vertical dashed line is �=0.275J which is close to the inflexion
point of the critical line for �=5 /2. In this figure, we have distin-
guished the points with finite free energy per spin from the points
with a divergent free energy per spin representing the latter by
empty circles. Again, we can observe a good agreement between the
numerics and the expansion at T=0. The difference between the
analytical approximation and interpolation is again never greater
than 1%.
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A. Platykurtic case: ��1

In the limit T→0, the free energy and magnetization
become,1 respectively,

f i =

�	 5 − 3�

2�1 − ��



2�2 − ���	2 − �

1 − �

�

1 − �

�5 − 3���

��4

�2 − ��2F1	1

2
,

1

� − 1
;
3

2
;

�1 − ��J2

�5 − 3��
2
mi

2
J2



mi

2

+ �5 − 3��
3�2	1 −
�1 − ��J2

�5 − 3��
4
mi

2
1+1/1−�

− 1

− �
2�
2 − 1��1+1/1−�� + 2�2 − ���5 − 3�

1 − �

�2F1	1

2
,

1

� − 1
;
3

2
;

1


2
�1 − Jmi�� , �4.1�

and

mi = 2� 1 − �

�5 − 3���

�	 5 − 3�

2�1 − ��



�	2 − �

1 − �



�� J



�2F1	1

2
,

1

� − 1
;
3

2
;

�1 − ��J2

�5 − 3��
2
mi

2
mi, �4.2�

where 2F1�. , . ; . ; .� is the Gauss hypergeometric function
�34�. In the same way as in the finite-temperature analysis,
we expand the above magnetization �4.2� in powers of mi, so
that

mi = aimi + bimi
3 + cimi

5 + O�mi
7� , �4.3�

where

ai = − 2� J



�� �1 − ��3

�5 − 3���

�	 5 − 3�

2�1 − ��



�	 1

1 − �

 , �4.4�

bi = −
2

3��
� J



�3� 1 − �

5 − 3�
�3/2

�	 5 − 3�

2�1 − ��



�	 1

1 − �

 , �4.5�

ci =
1

5��
� J



�5� 1 − �

�5 − 3��5
�

�	 5 − 3q

2�1 − q�



�	2 − �

1 − �

 . �4.6�

The continuous critical frontier at zero temperature is ob-
tained for ai=1,




J
=

2�1 − ��

��
� 1 − �

5 − 3�
�1/2

�	 5 − 3�

2�1 − ��



�	 1

1 − �

 , �4.7�

providing that bi�0, which occurs for all ��1. The last-
mentioned equation allows determining the exact point at
which the critical frontiers obtained in Sec. III A reach the
zero-temperature axis �the circles in Fig. 2�. The zero-
temperature phase diagram is shown in Fig. 4.

B. Leptokurtic case: �
1

In this regime, PDF �2.3� presents a distinct behavior for
1���5 /3 and �
5 /3. Explicitly, the former case corre-
sponds to the case in which the standard deviation is finite
and the latter to the case for which the distribution has the
same asymptotic behavior as the Lévy distribution.

1. Finite standard deviation: 1���5 Õ3

For this range of �, the free energy and the magnetization
become

1For the purpose of obtaining the following expressions we made
use of the integrals presented in Sec. 3.19 in Ref. �33�.

�1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Τ

Ω
�J

Platykurtic Leptokurtic

P

F

FIG. 4. �Color online� Zero-temperature phase diagram separat-
ing the ferromagnetic �F� and the paramagnetic �P� phases for
platykurtic ���1� and leptokurtic ��
1� distributions. The hori-
zontal dotted line represents the limiting case �→−�, i.e., the uni-
form distribution �� /J=1�, the dashed vertical line represents the
limit for finite standard deviation ��=5 /3�, and the dot-dashed line
the limit for finite average ��=2�. The points emphasize the inter-
section between vertical lines and the critical line. They correspond
to values of � /J equal to �2 /�, 1 /�2, and 2 /�, respectively.
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fs =� 5 − 3�

�� − 1��

�	2 − �

� − 1



�	 3 − �

2�� − 1�



�
�	1 −
1 − �

5 − 3�
� J



�2

ms
2
1/1−�+1

+ 2�2 − ��

�� J



�2

2F1	1

2
,

1

� − 1
;
3

2
;−

1 − �

5 − 3�
� J



�2

ms
2
ms

2�
�4.8�

and

ms = 2ms� J



�� � − 1

�5 − 3���

�	 1

� − 1



�	 3 − �

2�� − 1�



�2F1	1

2
,

1

� − 1
;
3

2
;−

1 − �

5 − 3�
� J



�2

ms
2
 , �4.9�

respectively. Similarly to the ��1 analysis, we can expand
the magnetization ms, Eq. �4.9�, in powers of ms,

ms = asms + bsms
3 + csms

5 + O�ms
7� , �4.10�

where

as = 2� J



�� � − 1

�5 − 3���

�	 1

� − 1



�	 3 − �

2�� − 1�

 , �4.11�

bs = −
4

3
� J



�3� �� − 1�3

�5 − 3��5�

�	 1

� − 1



�	 5 − 3�

2�1 − ��

 , �4.12�

cs = � J



�5 �

5
� � − 1

�5 − 3��5�

�	 1

� − 1



�	 3 − �

2�� − 1�

 . �4.13�

The continuous critical frontier at zero temperature is ob-
tained for as=1,




J
=

2

��
� � − 1

�5 − 3��

�	 1

� − 1



�	 3 − �

2�� − 1�

 , �4.14�

as long as bs�0. In the range 1���5 /3, we notice that the
coefficient bs is always negative indicating the occurrence of
continuous phase transitions for all values of �. This expres-
sion permits us to determine the values of 
 /J, or equiva-
lently, the values of � /J �see Eq. �2.5�� at T=0 of the phase
diagrams depicted in Fig. 3. In Fig. 4, we show the zero-
temperature phase diagram, on the plane � /J vs �.

2. Finite width: 5 Õ3���3

Mark that in this range we must use �. Thus, as previ-
ously, the free energy and magnetization are, respectively,

fs =� � − 1

�3 − ���

�	 1

� − 1



�	 3 − �

2�� − 1�



����3 − ��

�2 − ��
	1 −

1 − �

3 − �
� J

�
�2

ms
2
1/1−�+1

+ 2� J

�
�2

2F1	1

2
,

1

� − 1
;
3

2
;−

1 − �

3 − �
� J

�
�2

ms
2
ms

2�
�4.15�

and

ms = 2ms� J

�
�� � − 1

�3 − ���

�	 1

� − 1



�	 3 − �

2�� − 1�



�2F1	1

2
,

1

� − 1
;
3

2
;

�� − 1�J2

�� − 3��2
ms

2
 . �4.16�

Analogously to the above cases, we expand the magnetiza-
tion ms, Eq. �4.16�, in powers of ms,

ms = asms + bsms
3 + csms

5 + O�ms
7� , �4.17�

with the coefficients

as = 2� J

�
�� � − 1

�3 − ���

�	 1

� − 1



�	 3 − �

2�� − 1�

 , �4.18�
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bs = −
2

3
� J

�
�3� 1

���4 − ��� − 3�

�	 1

� − 1



�	 3 − �

2�� − 1�

 ,

�4.19�

cs =
2

45
� J

�
�5� � − 1

�3 − ���

�5 + 9��

�3 − ��2

�	 1

� − 1



�	 3 − �

2�� − 1�

 .

�4.20�

Thus, the continuous critical frontier is given by

�

J
=

2

��
� � − 1

3 − �
�1/2

�	 1

� − 1



�	 3 − �

2�� − 1�

 �4.21�

and we have again verified that bs�0 for all values 5 /3
���3. We can see in Fig. 4 the zero-temperature phase
diagram in the plane containing the width � and the gener-
alized degree of freedom �.

In this case, it is worth noticing an important result. In the
free energy per spin �4.15�, the integrals are finite only for
��2, i.e., the free energy at temperature equal to zero is not
finite for probability density functions broader than the
Cauchy-Lorentz. Although we do not have an unequivocal
physical account for this phenomenon, we introduce some
insight into this result with the help of the statistical meaning
of our distributions. As mentioned in Sec. II, for �
1, dis-
tribution �2.3� is understood as a generalization of Student-t
for real degrees of freedom according to the relation

� =
3 + m

1 + m
. �4.22�

The Cauchy-Lorentz distribution, Eq. �2.3� with �=2, cor-
responds to the case for which the distribution presents a
divergence in the average but a null average value of the
corresponding escort distribution. The divergence of the
mean value of the free energy for �
2 emerges from that
feature of the property of Eq. �2.3�. Moreover, this diver-
gence was experimentally observed in organic charge-
transfer compounds �24�.

In order to summarize the results presented in the paper,
we show in Fig. 5 a tridimensional phase diagram separating
the ferromagnetic �F� and the paramagnetic �P� phases de-
fined by the axis temperature �in units of J�, � and � �also in
unit of J�. We observe a contraction of the ferromagnetic

phase for increasing values of �. We have spotted the above-
described change in the concavity of the critical frontier for
�
2, as well as the dwindling of the ferromagnetic phase
�for increasing values of �� which in limit �→3 turns into
the point �=0.

V. CONCLUDING REMARKS

In this work we have investigated the infinite-range-
interaction Ising model in the presence of a random magnetic
field following a family of continuous probability density
functions, defined by a parameter � comprising the r distri-
bution, for ��1, and the Student-t, for �
1, which have
already found their statistical relevance within other contexts
of disordered systems. Moreover, specific PDFs such as the
Gaussian ��→1�, the uniform ��→−��, and the Cauchy-
Lorentz ��=2� are obtained thereof. Independently of �, we
have observed a continuous phase transition with the lessen-
ing of the ferromagnetic phase in the kT

J vs �
J plane that

corresponds to the region defined by 0	
kT
J 	1 and 0	

�
J

	1 in the uniform case and to the point �
J = kT

J =0 for �→3.
For ��2, we have noted the appearance of an inflexion point
for finite �

J and kT
J that is also associated with a divergence of

the free energy per spin at null temperature for which we
have provided with an explanation based on the statistical
nature of distributions that are fatter than the Cauchy-
Lorentz.

As an extension of this work, a numerical study by means
of Monte Carlo simulations of the model defined by Eqs.
�2.1�–�2.3� in the case of nearest-neighbor interactions is
thought to bring a better understanding of the physical prop-
erties of the Ising model in the presence of random magnetic
fields that follow continuous probability distributions �35�.
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FIG. 5. �Color online� Tridimensional phase diagram of the
model in the axis temperature, � and � /J, separating the ferromag-
netic �F� and the paramagnetic �P� phases. We have used a darker
color to represent the regime of � ��
2� in which we have deter-
mined a divergent free energy per spin analytically found at T=0.
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